COMBAT SYSTEM
The frigate features an indigenously developed combat system known as the combat management system (CMS). The CMS is a federated system featuring embedded decision-support aids with an embedded weapons control function allowing for tighter integration with other ship sensors. A dual Fast Ethernet data-transfer system forms the information backbone for the combat system. The CMS provides automated functionality for sensor management, track fusion, picture compilation, threat evaluation and weapon assignment. As a federated system it is more vulnerable to battle damage than distributed systems such as the US SSDS system due to the fact that federated systems have nodes through which information pass through while fully distributed don’t – these nodes constitute points of vulnerability. Against this disadvantage, a federated architecture utilizes computing resources more efficiently and is less complex, resulting in savings in developmental time and money.
ST Electronics is providing the Standard Operating Common Consoles (SOCCs) for the CMS, which are installed in the below-decks CIC, the nerve centre for all combat operations within the ship. Operations within the CIC are grouped in clusters according to their combat roles and functions. Warfare supervisors manage operations within these clusters and are responsible to the principal warfare officers. Each SOCC features dual 20-inch colour flat-screen displays.
Another ST Electronics company, CET Technologies, is providing its SuperneT ST2600 Shipboard Integrated Communication System. ST2600 builds on the functionality of the earlier SuperneT ST2300 system but introduces Asynchronous Transfer Mode data networking for improved redundancy and resilience. The system provides control and management of all external communications (including satellite communications) together with internal communications and ship's broadcast.
The frigates are envisaged as information nodes as well as fighting units. They will play flagship in a naval taskforce, acting as the Republic of Singapore Navy's 'mobile ops centre' out at sea, with a span of influence that stretches up to about 200 miles. It will be capable of receiving information from sister ships and aerial assets deployed within that range. It will then make sense of the pieces of puzzle, establish an accurate picture of the area of operations and send the information back to shore and to its Army and Air Force counterparts. As such they are well equipped with communications equipment, and 5 consoles are reserved at the back of the CIC for that purpose. France's BMTI has supplied the VHF/UHF antenna systems for the Formidable class. Each frigate is fitted with two AS 329 UHF multisource (225-400 MHz) omnidirectional annular antennas, two AS 273 UHF broadband dipole (225-1,300 MHz) antennas, and a single AS 262 VHF/UHF broadband dipole (110-500 MHz) antenna. Inmarsat B and VSAT satellite communication antennas are sited aft of the communications mast...
RADAR
The Formidable frigate is equipped with the Herakles multi-function radar (MFR). It is a single-face, S-band mono-pulse phased-array radar with its passive beam-forming lens array incorporating 1,761 phase shifters. The radar is optimised for the littorals and is intended to provide surveillance from 0 km out to a range of 250 km with coverage up to 70º. Local 3D area air coverage extends to 80 km. The Herakles is housed in a low RCS radome which rotates at 60 rpm, and it has a track capacity of more than 500 air and surface targets. Peak radar power output is given as 50 kW. The high rotation rate of the radar has apparently caused unanticipated problems. A late modification to the Formidable-class frigate involved the addition of a platform under the rotating trapezoidal radar dome which was required to solve the air-flow problems encountered during the operation of the Herakles radar.
As a MFR it is capable of IFF, horizon scanning, environment mapping (ground and sea clutter, rain and jamming), accepting target cues from external sensors through the combat-management system, passive tracking of stand-off jammers, missile mid course guidance, gunfire control (through splash spotting), search and tracking. A Space Time Management (STM) device governs the signal generator for auto-adaptive radar scheduling to enable rapid switching between tasks and optimization of the time/energy budget in cluttered littoral environments. Simultaneous mid course guidance of up to 16 surface-to-air missiles is supported. With the Herakles combining both Search and Fire Control functions within the same radar (in a similar conceptual fashion to AEGIS) and the CMS featuring embedded weapons control function, one can expect a very short reaction time from target detection to launch of missile (probably in the order of single digit >=4 seconds compared to 15 to 20 seconds for many other systems).
The Herakles incorporates a number of advanced features. It is known to feature non-cooperative target recognition (NCTR) based on its use of a less than 1m resolution waveform, which allows for automatic classification of targets without relying on a cooperative IFF response from the target. This feature allows for faster reaction times which is especially important in the littorals. As a passive phased array radar, it features very low sidelobe emissions and is able to scan in both elevation and azimuth, allowing for very rapid transition from target detection to track initiation - track formation is completed within 1 second after initial detection for most targets, or within 2 seconds for highly stressing targets like incoming sea skimming anti ship missiles. Typical track formation ranges are given as 200 km on a fighter or helicopter, 60 km on a low RCS missile and 20 km on a sea skimming missile flying over rough sea. Volumetric search out to more than 200 km is done through a multi-beam approach which uses 4 concurrent beams produced from a 16-element 'retina' behind the lens to scan the airspace. To track targets and own-ship surface to air missiles a pencil beam is used as opposed to the usual track-while-scan used in other radars. Waveform optimization according to different environmental domains is also another notable feature of the Herakles radar.
The Herakles also features a high mean time between failure (MTBF) of 900 hours. Energy to the radar is generated by a set of 40 solid-state power modules (known as 'power books'). The radar enjoys graceful degradation of its performance - the loss of a few of these modules results in negligible performance degradation, with even a 50% loss of the modules leading to a mere 20% drop in radar range performance. Replacement of failed modules can be carried out without shutting down the radar. Unique to the Formidable frigate, there is also a dedicated local radar control workstation that is situated in the vicinity of the Herakles radar system. This is presumably a redundancy measure to reduce susceptibility to battle damage...