Re: F-35 Multirole Joint Fighter
And now for Part 2...
ANALYSIS: Lockheed-Martin F-35 Joint Strike Fighter
(Australian Aviation, May/June 2002, p 28-32, p 24-27.)
Carlo Kopp, PEng
[email protected]
© 2002, Carlo Kopp
©2002, Aerospace Publications, Pty Ltd, Canberra.
July 15, 2002
Part 2 Sizing up the Joint Strike Fighter
The public rhetoric surrounding the Joint Strike Fighter is no less deceptive to the uninitiated as the public rhetoric surrounding many of the other current production types being bid for AIR 6000. In all instances we hear the `latest avionics technology' and`stealth performance' as key attributes of a `modern high tech fighter' designed to `meet the threats of the future'.
In comparing the Joint Strike Fighter against the Eurofighter Typhoon, Dassault Rafale, F-16C/B60 and F/A-18E/F, the Joint Strike Fighter will have a decisive advantage in its very moden integrated avionic architecture, which is modelled on that of the F-22A but built using militarised commercial computing technology. With a battery of GigaHertz clock speed processors, high speed digital busses with around 1,000 times the throughput of the Mil-Std-1553B busses in the teen series and Eurocanard fighters, it is no contest - the Joint Strike Fighter is in an unbeatable position. While growth versions of the teen series and Eurocanard fighters might see a similar integrated avionic architecture in the post 2010 period, this is unlikely to be a revenue-neutral design change.
Against all of these contenders, the Joint Strike Fighter has an unassailable survivability advantage in its use of evolved second generation stealth technology, again derived from the F-22A technology base. With a forward sector radar cross section cited to be `close to the F-22' the Joint Strike Fighter will present a challenging target to forward sector radar guided threats.
As a bomb truck, the Joint Strike Fighter falls into a similar payload class to these players, but with the important distinction that it carries its bombs or missiles internally, and it has an internal fuel capacity similar to that of these competing aircraft loaded up with external fuel tanks. In practical terms this means that the Joint Strike Fighter can carry a similar load of fuel and bombs without the critical transonic regime drag penalty of external stores. Therefore it can carry the same bomb load further using a similar fuel load. Claims that the X-35 demonstrator exceeded the Joint Strike Fighter combat radius requirement should come as no surprise - the cited figure of 600+ nautical miles is credible and a distinct gain over the F-16C and F/A-18A/C. This radius is however unlikely to be acheivable if the F-35 is heavily loaded with external stores, since it will like its competitors incur a major drag penalty.
Claims that the Joint Strike Fighter is an `F-111 class bomb truck' are scarcely credible, especially if the F-111 is armed with internal JDAMs or `small bombs' - a variable geometry wing and 34,000 lb of internal fuel is impossible to beat in the bomb trucking game. The comparison of a clean F-35 against an F-111 loaded with external BRU-3A/Mk.82 is not representative of what a post 2020 F-111 weapons configuration would look like. The only decisive system level advantage the Joint Strike Fighter has against the F-111 is its use of second generation stealth technology - no radar cross section reduction on the F-111 will make it competitive against this type. In terms of avionics, if the RAAF retains the F-111 post-2020 then Joint Strike Fighter generation technology would most likely find its way into the Pig and thus render this comparison meaningless.
As an air combat fighter the Joint Strike Fighter is more difficult to compare, since the differences against the teen series and Eurocanards are less distinct. In terms of achievable radar performance its small aperture radar will fall broadly into the same class as its direct competitors. While transonic turn rate performance figures remain classified, the F-35 is a 9G rated fighter and is thus apt to deliver highly competitive transonic close-in dogfight performance against the teen series and Eurocanards. The empty weight of the F-35, at 26,500 - 30,000 lb is deceptive insofar as it must be compared against a conventional competitor's weight including external pylons and empty fuel tanks - nevertheless it is in the empty weight class of an F-15 or F/A-18E rather than F-16C or F/A-18C.
With a nominal payload of 2,000 lb of AAMs the USAF F-35 yields a combat thrust/weight ratio around 1.1:1 which is competitive against a modestly loaded F-16, F/A-18A/C or Eurocanard, but with a typically better combat radius or combat gas allowance - however it is not in the class of an F-15C let alone F-22A. Therefore the F-35 should provide competitive acceleration and climb performance at similar weights to the F-16, F/A-18A/C or Eurocanards. With the upper portions of the split inlets likely to produce good vortices, the F-35 should provide respectable high alpha performance and handling, especially if flight control software technology from the F-22A was exploited fully.
Where the F-35 is apt to be less than a stellar performer is in the supersonic Beyond Visual Range combat regime, which is the sharp end of air superiority performance. This is primarily a consequence of the wing planform design which is in the 35 degree leading edge sweep angle class, thus placing it between the sweep of the F/A-18A/C and F-16A/C. Wing sweep in this class is good for transonic bomb trucking and tight turning, but incurs a much faster supersonic drag rise with Mach number against the supersonic intercept optimised wing planforms seen in the F-15, Typhoon, Rafale and indeed the F-22A. The important caveat is that the teen series and Eurocanards wear a hefty supersonic drag penalty from carrying external missiles and drop tanks, whereas the F-35 will have a clean wing in this regime.
In the absence of published hard numbers for supersonic acceleration, energy bleed and persistence performance, the only reasonable conclusion is that the F-35 is likely to be competitive against the teen series and Eurocanards in combat configuration but decisively inferior to the F-22A.
Another factor in the BVR game is radar performance, limited by the power/aperture of the radar design. While hard numbers on the F-35's radar are yet to be published, what is available suggests an 800-900 element phased array which is in the class of the F-16C/B60, F/A-18E/F and Eurocanards but well behind the massive 2200 element APG-77 in the F-22A. With a superior processing architecture to the F-16C/B60, F/A-18E/F and Eurocanards the Joint Strike Fighter is very unlikely to have inferior radar performance, but may not have a decisively large detection range advantage either.
If used as an air defence interceptor and air superiority fighter, the F-35 will deliver similar capabilities to the F-16C/B60, F/A-18E/F and Eurocanards at similar weights - its limitations in thrust/weight ratio and thus climb rate/acceleration, and wing optimisation for transonic regimes, will limit its ability to engage high performance supersonic threats by virtue of basic aerodynamic performance. Its small radar will also put limitations on achievable BVR missile engagement ranges, although this will be mitigated by very good forward sector stealth performance. A threat with a large infrared search and track set may however get a firing opportunity in a high altitude clear sky engagement. The radar performance bounds will also present similar limitations to those seen with the F-16C/B60, F/A-18E/F and Eurocanard series when hunting for low flying cruise missiles - without close AWACS support the F-35 may not be very effective in this demanding role.
It is worth noting that the F-35 is not an all-aspect stealth design like the F-22A and YF-23 which have carefully optimised exhaust geometries and thus excellent aft sector radar cross section. The axisymmetric F-135 nozzle is not in this class and thus the F-35 is clearly not intended for the deep penetration strike role of the F-22A.
Attempting to make an all encompassing comparison of the F-35 against current fighters is fraught with some risks, insofar as the design will further evolve before production starts and many design parameters, especially in avionics, may shift. In terms of basic sizing and performance optimisations probably the best yardstick is that the F-35 is much like a `stealthy but incrementally improved F/A-18A/C' which closely reflects the similarity in the basic roles of the two types - strike optimised growth derivatives of lightweight fighters.
The F-35 is clearly out of its league against the F-22A in all cardinal performance parameters, with the exception of its bomb bay size which is built to handle larger weapons than the F-22A. Disregarding stealth capability and baseline avionics, the F-35 is also out of its league against the F-111 in the bomb trucking role by virtue of size and fixed wing geometry.
All of these analytical arguments are essentially contingent upon the JSF meeting its design performance and cost targets. This remains to be seen since the JSF is arguably the highest technological risk program in the pipeline at this time. Key risk factors derive from its reliance upon `bleeding edge' technology to achieve the combination of capability for its size and cost. There are no less than five areas of concern: the COTS derived avionic system departs from established technology and is in many respects a repeat of the F-111D Mk.II avionics idea; the reliance upon software goes well beyond established designs and software systems with many millions of lines of code are not reknowned for timely deliveries; any durability problems with the hot running F135 engines would be handled by derating which cuts into an already marginal thrust/weight ratio; differing needs and expectations by the JSF's diverse customer base could cause divergence in program objectives and cost blowouts in `common' areas; the sheer complexity of what the JSF project is trying to achieve in melding untried technologies with diverse missions could create unforseen problems in its own right. Until we see production JSFs coming off the production line, it remains a high risk option.
The Joint Strike Fighter is a most curious blend of the F-22 technology base, state-of-the-art avionics and Cold War era strategic thinking - in its own way as much a Cold War anachronism as the Eurocanards. Insofar as one of its prime design aims is to shoot down the Eurocanards in the commercial dogfight, it represents an instance of an anachronistic fighter sizing strategy and associated cost structure becoming a principal design driver over achievable combat effect and long term strategic usefulness.
2.1 Joint Strike Fighter vs A6K
With the F-35 being the holy grail of budget minded force planners throughout the West, it has developed some followers in the Canberra defence establishment, especially amongst players who see little importance in the RAAF's established doctrinal and strategic thinking or developing regional environment. Indeed, if we pretend that the PRC doesn't exist and India's strategic competition with the PRC in the region doesn't concern us, and that cruise missiles are not the hottest selling item across the wider region, then the F-35 becomes an attractive proposition - a cheap to buy, cheap to run, stealthy hi-tech fighter which is an incremental improvement over the RAAF's somewhat anaemic F/A-18A Hornet.
As a bomb truck, disregarding stealth performance, the F-35 falls into the gap between the F/A-18A and F-111. As an air combat fighter, it will offer modest performance gains over the F/A-18A HUG and the advantage of stealth. In the eyes of many this is apt to be a `good compromise' at a `good price'.
These arguments may appear superficially reasonable, but are based upon a number of premises which are not reasonable. Regional strategic issues may have disappeared from the press and TV bulletins but remain as they were a year ago:
1.The regional arms race has yet to show signs of abating, and with the War on Terrorism forcing the US to make significant political concessions to China and India we should expect to see both players doing their best to shop for Russian (and Israeli) technology while world attention is focussed elsewhere.
2.Shifting tactics in nations opposed to the West will see mobility become the basic tactic for evading air power, given that Afghanistan has proven yet again that bunkers, caves and tunnels are no defence against air power. Loitering bombardment will become the baseline tactic for defeating mobility, demanding larger fighters.
3.Mobile ballistic missiles and cruise missiles are the most rapidly proliferating weapon class in Asia today, and given their value in implementing `anti-access' strategies against Western air power, and political coercion, this is unlikely to change soon. Korea has made a successful business out of the export of extended range Scud derivative technology.
4.The cumulative total of Su-27/30 orders in Asia still remains around the 500 aircraft mark, representing an environment where a 600 nautical mile class subsonic combat radius is not a decisive strategic advantage against the Sukhoi's similar or better radius performance.
5.Turmoil in the Middle East is likely to see long term growth in alternative sources of oil and gas, accelerating development in Australia's Timor Sea and North West Shelf energy industries - and Australia's strategic vulnerability as a result.
6.Uncertainties in the RAAF gaining basing access in South East Asia during a regional crisis remain. While the War on Terrorism may have shifted the focus of Australia's regional interactions, the reality is that much of the region is culturally Muslim and whatever the outcome of the war, political sensitivies in the region will be exacerbated over the nearer and longer term.
The sad reality is that the regional strategic drivers remain as is - they are a consequence of the ongoing economic and military growth in Asia. While India's current relationship with the West has thawed, this situation may not persist over coming decades - the strategic timeline which concerns A6K planning.
What the War on Terrorism will produce, other than major strategic changes in the Middle East and Central Asia, is an increased move to mobility in Asian armed forces as the Afghan campaign is understood fully. It is also apt to produce a longer term demand for coalition campaign forces to support the US in expeditionary warfare.
If we make the assumption that A6K will aim to field only new technology fighters with a very long term development future, then the only relevant candidates are the F-22 and F-35 - both stealthy and using the latest generation avionic architectures and engines.
Numerous strategies exist - with or without F-111 replacement - for implementing the A6K program. If the F-111 is to disappear in 2015-2020, then the choices are a single type replacement using only the F-22, or only the F-35, or some Hi-Lo mix of the F-22 and F-35. If the F-111 is to be stretched beyond 2020, then the F/A-18A could be replaced with either the F-22 or the F-35. This provides no less than 5 possible force structure models, each with different funding needs and capability mixes. Which is best? That depends on the priorities of the observer.
The case for a mix of F119 powered F-111s and F-22s was argued in some detail in AA late last year and presents a robust case in capabilities, with the benefit of significant domestic spending but the drawback of some developmental risk. The case for an F-22 and F-35 mix depends crucially on the perceived importance of bomb-trucking performance vs survivability of the F-35 against the F-111. The F-35's stealth advantage must be weighed against the F-111's superior ability to haul big loads over big distances - with an F-22 escort to kill opposing fighters and SAMs the survivability argument may prove narrower than many may think. A mix in which transonic F-35s escort supercruising F-111s is arguably non-viable and is merely a new technology reimplementation of the existing F/A-18 and F-111 mix.
The alternatives of single type total force replacements with the F-22 or F-35 also raise interesting issues. While the F-35 at this time carries larger bombs than the F-22, it is a decidely inferior performer in the air combat game and the deep penetration strike game. With supercruise capability in a baseline bombing role using `small bomb' payloads the supercruising F-22's higher sortie rate at longer ranges suggests that one F-22 can perform a similar workload to a pair of F-35s, with the caveat that two or more F-35s will be needed to perform the air defence coverage of a single F-22. In terms of deterrent credibility and potency in combat, the F-22 is unbeatable, in terms of political whining from air power detractors of every ilk, it is a guaranteed magnet (deja vu - F-111 1967?). Conversely, a pure F-35 force structure is apt to leave important capability gaps in air superiority, cruise missile defence and deep penetration strike, while pushing up total numbers and thus aircrew demands - the latter likely to be a major long term issue with ongoing demographic shifts.
A key factor in any F-22 vs F-35 contest is that the F-35 order book is full, but the F-22 buy was hatcheted from around 750 down to 332 thus providing significant incentives for an export sale of an aircraft which would be exclusively available, like the F-111 during the 1960s, only to close and trusted allies of the US. US sources suggest a revived build of 750 F-22s would push the unit cost down to USD 74M, similar to an F-15E.
Which of these strategies proves to be most attractive to Australia's leadership is yet to be seen - and if the government is serious about the A6K effort this will not be known until a decision is reached around the middle of the decade.
What is clear at this stage is that the fighter market is stratifying in a manner without precedent - two decades ago a buyer had more than one choice in any given size/weight/performance class. By 2010 this will be untrue - in non-stealthy fighters there is apt to be only the F/A-18E/F and Typhoon with different weights, aerodynamics and mission avionic capabilities, and in stealthy fighters the F-22 and F-35 which are much more diverse in capabilities than their teen series predecessors, the F-15 and F-16. Therefore a choice of fighter will determine the choice of strategy/doctrine since different classes of fighter provide distinctly different possibilities - and limitations - in roles and missions.
One might ask the question of whether the `classical' model of a fighter competition is even relevant any more? With the only gains from the competitive process likely to be in ancillary benefits such as domestic support programs - aircraft prices being largely fixed by the domestic markets of the manufacturers - one might seriously contemplate the primary focus of the A6K evaluation being in assessing the ability of particular fighter types or mixes/numbers thereof to perform the intended roles, rather than the historical game of playing manufacturers off to secure the best pricing package.
In the context of A6K, the F-35 Joint Strike Fighter is most notable in terms of the roles andmissions it cannot do well, rather than those it can. If air superiority and long range strike are thelong term priorities which government policy ostensibly declares them to be, then the F-35may not be the best choice for replacing the F/A-18A or the F-111, either singly or in amix.
Admin: A-D, would you mind making these smaller in future. Better to have multiples than a single one that is a monster to read at one go.